Variational Heteroscedastic Gaussian Process Regression
نویسندگان
چکیده
Standard Gaussian processes (GPs) model observations’ noise as constant throughout input space. This is often a too restrictive assumption, but one that is needed for GP inference to be tractable. In this work we present a non-standard variational approximation that allows accurate inference in heteroscedastic GPs (i.e., under inputdependent noise conditions). Computational cost is roughly twice that of the standard GP, and also scales as O(n). Accuracy is verified by comparing with the golden standard MCMC and its effectiveness is illustrated on several synthetic and real datasets of diverse characteristics. An application to volatility forecasting is also considered.
منابع مشابه
Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals
Abstract Gaussian Process (GP) regression models typically assume that residuals are Gaussian and have the same variance for all observations. However, applications with input-dependent noise (heteroscedastic residuals) frequently arise in practice, as do applications in which the residuals do not have a Gaussian distribution. In this paper, we propose a GP Regression model with a latent variab...
متن کاملVariational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression
We introduce a novel variational method that allows to approximately integrate out kernel hyperparameters, such as length-scales, in Gaussian process regression. This approach consists of a novel variant of the variational framework that has been recently developed for the Gaussian process latent variable model which additionally makes use of a standardised representation of the Gaussian proces...
متن کاملVariational Bayesian Optimization for Runtime Risk-Sensitive Control
We present a new Bayesian policy search algorithm suitable for problems with policy-dependent cost variance, a property present in many robot control tasks. We extend recent work on variational heteroscedastic Gaussian processes to the optimization case to achieve efficient minimization of very noisy cost signals. In contrast to most policy search algorithms, our method explicitly models the co...
متن کاملAsymptotically efficient estimators for nonparametric heteroscedastic regression models
This paper concerns the estimation of a function at a point in nonparametric heteroscedastic regression models with Gaussian noise or noise having unknown distribution. In those cases an asymptotically efficient kernel estimator is constructed for the minimax absolute error risk.
متن کاملNonparametric Mixtures of Multi-Output Heteroscedastic Gaussian Processes for Volatility Modeling
In this work, we present a nonparametric Bayesian method for multivariate volatility modeling. Our approach is based on postulation of a novel mixture of multioutput heteroscedastic Gaussian processes to model the covariance matrices of multiple assets. Specifically, we use the Pitman-Yor process prior as the nonparametric prior imposed over the components of our model, which are taken as multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011